

Cannabis for Noncancer Conditions

Fig. 1. Structure of cannabinoid receptor agonists and antagonists.

Endocannabinoids

Evidence supports the role of endocannabinoids in:

Immune function

Inflammation

Appetite

Metabolism and energy

homeostasis

Cardiovascular function

Digestion

Bone development and

bone density

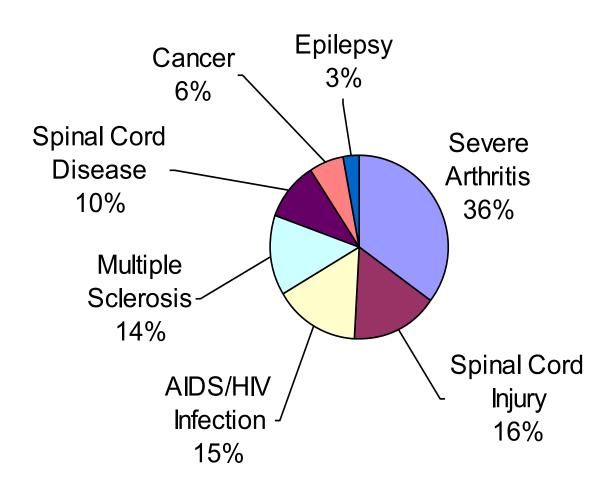
Pain

Reproduction

Psychiatric disease

Psychomotor behavior

Memory


Wake/sleep cycles

Regulation of stress and

emotional state

Learning

Disease Distribution of 2604 Patients with MMAR Category 1 Approvals (Up to Feb 6, 2009)

Cannabinoid indications

On-label indications:

Nausea and vomiting from chemotherapy Chronic pain (neuropathic pain in MS and cancer)

Anorexia associated with HIV / AIDS

Off-label indications/emerging evidence for:

PTSD

Anxiety

Insomnia

Spasticity (MS)

Lower urinary tract symptoms (MS)

Dementia-related symptoms

Neuropathic/nociceptive/

mixed pain

Chronic daily headache

Fibromyalgia

Anorexia and cachexia

Neurodegenerative diseases

Epilepsy

Inflammatory Bowel Disease

What is the evidence?

Pain

Pre-clinical

Clinical

-neuropathic-

Evidence

++

+++

Pre-clinical data: chronic pain

Robust in vitro evidence pain responds to cannabinoid treatment

Neuropathic pain has strongest evidence

Direct use of agonists/antagonists and prevention of FAAH degradation

Peripheral application effective, few A/E

Clinical data: Pain

RCT evidence supports oral use, smoking/vaporization, oral extracts
None using edibles or oils
Opioid sparing noted in many studies
Few A/E noted

Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials

Correspondence

Dr Mary E. Lynch, MD, FRCPC, Pain Management Unit, Queen Elizabeth II Health Sciences Centre, 4thFloor Dickson Centre, Room 4086, Halifax, Nova Scotia, B3H 1V7, Canada.

Tel.: +1 902 473 6428 Fax: +1 902 473 4126 E-mail: mary.lynch@dal.ca

Keywords

cannabinoids, chronic non-cancer pain,

J Neuroimmune Pharmacol DOI 10.1007/s11481-015-9600-6

INVITED REVIEW

Cannabinoids for the Treatment of Chronic Non-Cancer Pain: An Updated Systematic Review of Randomized Controlled Trials

M. E. Lynch^{1,3} · Mark A. Ware²

Research

Original Investigation

Cannabinoids for Medical Use A Systematic Review and Meta-analysis

Penny F. Whiting, PhD; Robert F. Wolff, MD; Sohan Deshpande, MSc; Marcello Di Nisio, PhD; Steven Duffy, PgD; Adrian V. Hernandez, MD, PhD; J. Christiaan Keurentjes, MD, PhD; Shona Lang, PhD; Kate Misso, MSc; Steve Byder, MSc; Simona Schmidtkofer, MSc; Marie Westwood, PhD; Jos Kleiinen, MD, PhD

Figure 2. Improvement in Pain

Improvement in Pain With	Cannabinoid Events		Placebo Events		Odds Ratio	Favors : Favors	
Cannabinoid vs Placebo by Study	No.	Total No.	No.	Total No.	(95% CI)		eight, %
Tetrahydrocannabinol (smoked)							
Abrams et al, ⁷⁷ 2007	13	25	6	25	3.43 (1.03-11.48)		6.51
Nabiximols							
GW Pharmaceuticals, ²² 2005	54	149	59	148	0.86 (0.54-1.37)		19.02
Johnson et al, ⁶⁹ 2010	23	53	12	56	2.81 (1.22-6.50)	· :	10.87
Langford et al, ⁶⁵ 2013	84	167	77	172	1.25 (0.81-1.91)		20.19
Nurmikko et al, ⁷⁶ 2007	16	63	9	62	2.00 (0.81-4.96)	·	9.84
Portenoy et al, ⁶⁷ 2012	22	90	24	91	0.90 (0.46-1.76)		14.04
Selvarajah et al, ⁷⁰ 2010	8	15	9	14	0.63 (0.14-2.82)	• • •	4.63
Serpell et al,88 2014	34	123	19	117	1.97 (1.05-3.70)	· · · · · · · · · · · · · · · · · · ·	14.91
Subtotal 12 = 44.5%, (P = .0.94)	241	660	209	660	1.32 (0.94-1.86)	9	93.49
Overall 12=47.6%, (P=.0.64)	254	685	215	685	1.41 (0.99-2.00)	10	00.00
						0.2 1.0 10	
						Odds Ratio (95% CI)	

Conclusions of reviews

Studies small, short in duration, modest effect size

"cannabinoids are safe, demonstrate a modest analgesic effect and provide a reasonable treatment option for chronic pain"

CPS Neuropathic Pain guideline

TCA \longleftrightarrow Gabapentin or pregabalin \longleftrightarrow SNRI * Tramadol or Controlled-release opioid analgesic **Cannabinoids** Add additional agents Fourth-line agents[†] sequentially if partial but inadequate pain relief

†methadone, lamotrigine, topiramate, valproic acid, lidocaine.

‡Do not add SNRIs to TCAs

What is the evidence?

MS	Evidence
Pre-clinical	+++
Observations	++
Clinical trials	+++

Cannabinoids in spasticity

Publication	Indication	Medication	N	Results
Zajicek et al. MUSEC. ECTRIMS 2009	Muscle stiffness and other symptoms in MS	Oral cannabis extract versus placebo	279	Patients' assessment of change from baseline: Significant for muscle stiffness, body pain, spasms and sleep quality
Vaney et al. Mult Scler. 2004	Spasticity in MS	Cannabis extract versus placebo	57	Ashworth: Not significantSpasm frequency and mobility: Significant in per-protocol set
Hagenbach et al. Spinal Cord. 2007	Spasticity in spinal cord injury	Oral and rectal cannabinoids	25	Spasticity sum score using Ashworth and self-ratings of spasticity: Significant
Pooyania et al. Arch Phys Med Rehabil. 2010	Spasticity in spinal cord injury	Nabilone versus placebo	12	Ashworth of Selected Muscle group: SignificantOverall Ashworth: Significant
Corey-Bloom J et al. CMAJ 2012	Spasticity in MS	Smoked cannabis vs placebo	37	•Ashworth improved vs placebo: significant; VAS for pain improved

Cannabinoids in spasticity

nabiximols

Study	Study Details	Endpoints			
Collin et al., 2007	MS, Spasticity (N=189)	Improvement in Spasticity (NRS)			
Collin et al., 2010	MS, Spasticity (N=337)	Improvement in Spasticity (NRS)			
Novotna et al., 2011	MS, Spasticity (N= [A] 572, [B] 241)	Improvement in Spasticity (NRS)			

Multiple sclerosis

CMAJ

RESEARCH

Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial

Jody Corey-Bloom MD PhD, Tanya Wolfson MA, Anthony Gamst PhD, Shelia Jin MD MPH, Thomas D. Marcotte PhD, Heather Bentley BA, Ben Gouaux BA

CMAJ 2012, 184:1143-50

RCT, crossover design 37 cannabis naïve or exposed MS patients with moderate + spasticity Average of 4 puffs of 4% THC or placebo cigarettes

Multiple sclerosis

	Plac	ebo	Cann	abis	Mean di		
Performance measure	Before treatment	After treatment	Before treatment	After treatment	Cannabis	Placebo	Effect
Spasticity, modified Ashworth score, mean (95% CI)*	8.92 (8.03 to 9.79)	8.71 (7.57 to 9.71)	9.13 (8.21 to 10.07)	6.18 (5.13 to 7.21)	2.95 (2.49 to 3.38)	0.21 (–0.09 to 0.51)	2.74 (2.20 to 3.14)
Pain, visual analogue score, mean (95% CI)†	14.51 (9.16 to 21.75)	11.52 (7.21 to 18.32)	16.61 (10.79 to 24.93)	8.34 (4.89 to 14.39)	8.27 (4.51 to 13.49)	2.99 (0.04 to 6.55)	5.28 (2.48 to 10.01
Physical performance, timed walk, s, mean (95% CI)‡	11.68 (8.87 to 16.41)	11.70 (8.81 to 16.98)	11.66 (8.90 to 16.69)	12.89 (9.55 to 17.94)	1.23 (0.33 to 2.63)	0.03 (–0.95 to 1.63)	1.20 (0.15 to 4.31)
Cognitive function, PASAT score, mean (95% CI)§	138.08 (123.76 to 149.74)	138.43 (123.37 to 150.38)	140.78 (127.31 to 151.52)	132.46 (116.38 to 144.07)	8.32 (4.95 to 14.16)	-0.35 (-2.92 to 2.47)	8.67 (4.10 to 14.31
Note: CI = confidence interval, PASAT = paced auditory serial addition test.							

Significant improvement in spasticity (p< 0.001) Better pain control (p<0.01) Reduction in cognitive function (p=0.003) No significant change in physical function Research

Original Investigation

Cannabinoids for Medical Use A Systematic Review and Meta-analysis

Penny F. Whiting, PhD; Robert F. Wolff, MD; Sohan Deshpande, MSc; Marcello Di Nisio, PhD; Steven Duffy, PgD; Adrian V. Hernandez, MD, PhD; J. Christiaan Keurentjes, MD, PhD; Shona Lang, PhD; Kate Misso, MSc; Steve Ryder, MSc; Simone Schmidlkofer, MSc; Marie Westwood, PhD; Jos Kleijnen, MD, PhD

Figure 3. Change in Ashworth Score for Cannabinoid Compared With Placebo, Stratified According to Cannabinoid

	Cannabino	oid	Placebo						
Score Change With Cannabinoid vs Placebo by Study	No. of Patients	Mean (SD) Score Change	No. of Patients	Mean (SD) Score Change	Mean Difference (95% CI)		Favors Cannabinoid	Favors Placebo	Weight, %
Nabiximols							ıl		
Collin, ¹²⁵ 2010	156	-3.3 (9.25)	160	-2.8 (7.81)	-0.50 (-2.39 to 1.39)	•	-		- 0.43
Collin, ¹²⁷ 2007	114	64 (.56)	63	53 (.58)	-0.11 (-0.29 to 0.07)				49.11
Wade, ¹²⁹ 2004	73	37 (2.51)	70	59 (2.04)	0.22 (-0.53 to 0.97)		$\overline{\Box}$	-	2.73
Berman,87 2007	40	13 (.43)	44	01 (.42)	-0.12 (-0.30 to 0.06)				46.03
Subtotal 12=0.0%, (P=.0.82)	383		337		-0.11 (-0.23 to 0.02)		→		98.30
Dronabinol							!		
Zajicek, ¹³¹ 2003	197	-1.86 (7.95)	207	92 (6.56)	-0.94 (-2.37 to 0.49)	←			0.75
Tetrahydrocannabinol/cannabidiol							il.		
Zajicek, ¹³¹ 2003	207	-1.24 (6.6)	207	92 (6.56)	-0.32 (-1.59 to 0.95)	-	-		0.95
Overall 12=0.0%, (P=.80)	590		544		-0.12 (-0.24 to 0.01)		⇔		100.00
						-2	-1 0	1	2

Mean Difference (95% CI)

What is the evidence?

Seizures

Pre-clinical

Clinical

Evidence

+

++

Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders

*Orrin Devinsky, †Maria Roberta Cilio, ‡Helen Cross, §Javier Fernandez-Ruiz, *Jacqueline French, ¶Charlotte Hill, Russell Katz, Independent Consultant, **Vincenzo Di Marzo, ††Didier Jutras-Aswad, ## Stilliam George Notcutt, ##Jose Martinez-Orgado, *** Philip J. Robson, †††Brian G. Rohrback, ‡‡‡Elizabeth Thiele, ¶Benjamin Whalley, and *Daniel Friedman

> Epilepsia, 55(6):791–802, 2014 doi: 10.1111/epi.12631

an open-label interventional trial

Orrin Devinsky*, Eric Marsh*, Daniel Friedman*, Elizabeth Thiele, Linda Laux, Joseph Sullivan, Ian Miller, Robert Flamini, Angus Wilfong, Francis Filloux, Matthew Wong, Nicole Tilton, Patricia Bruno, Judith Bluvstein, Julie Hedlund, Rebecca Kamens, Jane Maclean, Srishti Nangia, Nilika Shah Singhal, Carey A Wilson, Anup Patel, Maria Roberta Cilio

Lancet Neurol 2016: 15: 270-78

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 25, 2017

VOL. 376 NO. 21

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

Orrin Devinsky, M.D., J. Helen Cross, Ph.D., F.R.C.P.C.H., Linda Laux, M.D., Eric Marsh, M.D., Ian Miller, M.D., Rima Nabbout, M.D., Ingrid E. Scheffer, M.B., B.S., Ph.D., Elizabeth A. Thiele, M.D., Ph.D.,

EDITORIALS

Cannabinoids for Epilepsy — Real Data, at Last

Samuel F. Berkovic, M.D.

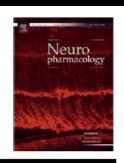
What is the evidence?

Neuroprotection

Pre-clinical

Clinical

Evidence



Contents lists available at SciVerse ScienceDirect

Neuropharmacology

journal homepage: www.elsevier.com/locate/neuropharm

Neuropharmacology 63 (2012) 776-783

Cannabidiol administration after hypoxia—ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function

M.R. Pazos ^a, V. Cinquina ^f, A. Gómez ^a, R. Layunta ^a, M. Santos ^a, J. Fernández-Ruiz ^{c,d,e}, José Martínez-Orgado ^{a,b,*}

Themed Issue: Cannabinoids in Biology and Medicine, Part I

REVIEW

Endocannabinoids and traumatic brain injury

Esther Shohami, Ayelet Cohen-Yeshurun, Lital Magid, Merav Algali and Jechoulam

Themed Issue: Cannabinoids in Biology and Medicine, Part I

RESEARCH PAPER

Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ⁹-THCV in animal models of Parkinson's disease

C García^{1,2,3}, C Palomo-Garo^{1,2,3}, M García-Arencibia^{1,2}, JA Ramos^{1,2,3}, RG Pertwee⁴ and J Fernández-Ruiz^{1,2,3}

Cannabis (Medical Marijuana) Treatment for Motor and Non–Motor Symptoms of Parkinson Disease: An Open-Label Observational Study

Itay Lotan, MD, Therese A. Treves, MD, Yaniv Roditi, MD, and Ruth Djaldetti, MD

Pharmacology Biochemistry & Behavior, Vol. 40, pp. 701-708. Pergamon Press plc, 1991. Printed in the U.S.A.

0091-3057/9

Controlled Clinical Trial of Cannabidiol in Huntington's Disease

Survey of cannabis use in patients with amyotrophic lateral sclerosis

What is the evidence?

Anxiety

Pre-clinical

Clinical

PTSD

Evidence

++

+

++

Cannabinoids and anxiety

Oral cannabinoids used for nausea produces sedation and reduced anxiety

Very low dose cannabis can produce sedation, diminish anxiety independent of psychoactivity

Cannabidiol can exert anti-anxiety effects, although only demonstrated in acute, experimentally-induced anxiety

A role for cannabinoid CB₁ receptors in mood and anxiety disorders

J. M. Witkin^a, E. T. Tzavara^b and G. G. Nomikos^a

Behavioural Pharmacology 2005, 16:353-362

Available online at www.sciencedirect.com

NEURO PHARMACOLOGY

Neuropharmacology 47 (2004) 1170-1179

www.elsevier.com/locate/neuropharm

Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats

Paola Fadda a,b, Lianne Robinson a, Walter Fratta b, Roger G. Pertwee a, Gernot Riedel a,*

The Use of a Synthetic Cannabinoid in the Management of Treatment-Resistant Nightmares in Posttraumatic Stress Disorder (PTSD)

George A. Fraser

Psychoneuroendocrinology (2015) 51, 577-584

Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder

Alexander Neumeister a,b,*, Jordan Seidela, Benjamin J. Ragena, Robert H. Pietrzak c,d

What is the evidence?

Depression

Pre-clinical

Clinical

Psychiatric Disorders

Pre-clinical

Clinical

Evidence

+

?

++

+

Serum Endocannabinoid Content is Altered in Females with Depressive Disorders: A Preliminary Report

Matthew N. Hill, M.A.¹, Gregory E. Miller, Ph.D¹, W.-S. Vanessa Ho, Ph.D², Boris B. Gorzalka, Ph.D^{1,*}, and Cecilia J. Hillard, Ph.D²

Review

Cannabinoids in bipolar affective disorder: a review and discussion of their therapeutic potential

Psychopharm

Journal of Psychopharmacology 19(3) (2005) 293–300 © 2005 British Association for Psychopharmacology ISSN 0269-8811 SAGE Publications Ltd, London, Thousand Oaks, CA and New Delhi 10.1177/0269881105051541

Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders

Alline C. Campos^{1*}, Manoela V. Fogaça¹, Franciele F. Scarante¹, Sâmia R. L. Joca², Amanda J. Sales², Felipe V. Gomes³, Andreza B. Sonego¹, Naielly S. Rodrigues¹, Ismael Galve-Roperh^{4,5} and Francisco S. Guimarães¹

Pharmacology & Therapeutics xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Pharmacology & Therapeutics

journal homepage: www.elsevier.com/locate/pharmthera

Endocannabinoid system and mood disorders: Priming a target for new therapies

Vincenzo Micale a,b,c,*, Vincenzo Di Marzo d, Alexandra Sulcova a, Carsten T. Wotjak b, Filippo Drago c

What is the evidence?

Inflammation Evidence

Pre-clinical

Observations

Clinical trial

+++

++

+

Cannabis Induces a Clinical Response in Patients With Crohn's Disease: A Prospective Placebo-Controlled Study

Published in final edited form as:

Inflamm Bowel Dis. 2013 December: 19(13): 2809-2814. doi:10.1097/01.MIB.0000435851.94391.37.

Marijuana Use Patterns Among Patients with Inflammatory Bowel Disease

High Hope for Medical Marijuana in Digestive Disorders

Robert W. Isfort, MD1 and Mark E. Gerich, MD1

Am J Gastroenterol 2016; 111:159-160; doi:10.1038/ajg.2016.3; published online 2 February 2016

ORIGINAL ARTICLE

Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn's Disease, a Randomized Controlled Trial

Timna Naftali^{1,2} • Refael Mechulam^{3,4} • Amir Marii⁵ • Gila Gabay^{1,2} • Asaf Stein^{1,2} • Miriam Bronshtain^{1,2} • Ido Laish^{1,2} • Fabiana Benjaminov^{1,2} • Fred M. Konikoff^{1,2}

Arthritis Care & Research Vol. 66, No. 6, June 2014, pp 797–801 DOI 10.1002/acr.22267 © 2014, American College of Rheumatology

REVIEW ARTICLE

The Dilemma of Medical Marijuana Use by Rheumatology Patients

MARY-ANN FITZCHARLES, DANIEL J. CLAUW, PETER A. STE-MARIE, AND YORAM SHIR

Diabetes

Observation: cannabis users better glucose control
Useful in diabetic neuropathy
Small study-use of CBD and THCV
reduced glucose, improved pancreatic f'n
New isolate with clinical benefit

Marijuana for Diabetic Control The Impact of Marijuana Use on Glucose, Insulin, and Insulin Resistance among US Adults

Elizabeth A. Penner, MD, MPH, a,b Hannah Buettner, BA,c Murray A. Mittleman, MD, DrPHb,c

Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study

Diabetes Care 2016;39:1777–1786 | DOI: 10.2337/dc16-0650

Glaucoma

Preclinical evidence supportive
Little clinical evidence to support use
Amer Glaucoma Society-recommends
against its use

Ideal format for administration not found

Cardiovascular Effects of Marijuana

Shereif Rezkalla, MD, FACP, FACC¹, Rachel Stankowski, PhD², and Robert A. Kloner, MD, PhD, FACC^{3,4}

Journal of Cardiovascular
Pharmacology and Therapeutics
2016, Vol. 21(5) 452-455
© The Author(s) 2016
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1074248415627874
cpt.sagepub.com

Mostly deleterious effects upon coronary and cerebral arteries, vascular endothelium leading to MI and CVA Arrhythmia more common in users

Advocating for national reporting system

Information for Health Care Professionals

Cannabis (marihuana, marijuana) and the cannabinoids

MARIHUANA

AND

MEDICINE

Edited by

GABRIEL G. NAHAS
KENNETH M. SUTIN
DAVID J. HARVEY
STIG AGURELL

Edited by Roger G. Pertwee OXFORD

Summary

Cannabis & cannabinoids active in disease models

Pre-clinical work evolving quickly

Clinical benefits in a variety of diseases and conditions

Not a panacea